Minimum congestion spanning trees in planar graphs
نویسنده
چکیده
The main purpose of the paper is to develop an approach to evaluation or estimation of the spanning tree congestion of planar graphs. This approach is used to evaluate the spanning tree congestion of triangular grids.
منابع مشابه
Minimum congestion spanning trees in bipartite and random graphs
The first problem considered in this paper: is it possible to find upper estimates for the spanning tree congestion for bipartite graphs which are better than for general graphs? It is proved that there exists a bipartite version of the known graph with spanning tree congestion of order n 3 2 , where n is the number of vertices. The second problem is to estimate spanning tree congestion of rand...
متن کاملSpanning tree congestion critical graphs
The linear or cyclic cutwidth of a graph G is the minimum congestion when G is embedded into either a path or a cycle respectively. A graph is cutwith critical if it is homeomorphically minimal and all of its subgraphs have lower cutwitdth. Our purpose is to extend the study of congestion critical graphs to embeddings on spanning trees.
متن کاملMinimum congestion spanning trees of grids and discrete toruses
The paper is devoted to estimates of the spanning tree congestion for grid graphs and discrete toruses of dimensions two and three.
متن کاملCounting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملDistributed Algorithms for Planar Networks II: Low-Congestion Shortcuts, MST, and Min-Cut
This paper introduces the concept of low-congestion shortcuts for (near-)planar networks, and demonstrates their power by using them to obtain near-optimal distributed algorithms for problems such as Minimum Spanning Tree (MST) or Minimum Cut, in planar networks. Consider a graph G = (V,E) and a partitioning of V into subsets of nodes S1, . . . , SN , each inducing a connected subgraph G[Si]. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 310 شماره
صفحات -
تاریخ انتشار 2010